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ABSTRACT

Caloric starvation, as well as various diets, has been proposed to increase the oxidative DNA damage induced by radiotherapy (RT). However, some
diets could have dual effects, sometimes promoting cancer growth, whereas proposing caloric restriction may appear counterproductive during RT
considering that the maintenance of weight is a major factor for the success of this therapy. A systematic review was performed via a PubMed search
on RT and fasting, or caloric restriction, ketogenic diet (>75% of fat-derived energy intake), protein starvation, amino acid restriction, as well as the
Warburg effect. Twenty-six eligible original articles (17 preclinical studies and 9 clinical noncontrolled studies on low-carbohydrate, high-fat diets
popularized as ketogenic diets, representing a total of 77 patients) were included. Preclinical experiments suggest that a short period of fasting prior
to radiation, and/or transient caloric restriction during treatment course, can increase tumor responsiveness. These regimens promote accumulation
of oxidative lesions and insufficient repair, subsequently leading to cancer cell death. Due to their more flexible metabolism, healthy cells should be
less sensitive, shifting their metabolism to support survival and repair. Interestingly, these regimens might stimulate an acute anticancer immune
response, and may be of particular interest in tumors with high glucose uptake on positron emission tomography scan, a phenotype associated
with poor survival and resistance to RT. Preclinical studies with ketogenic diets yielded more conflicting results, perhaps because cancer cells can
sometimes metabolize fatty acids and/or ketone bodies. Randomized trials are awaited to specify the role of each strategy according to the clinical
setting, although more stringent definitions of proposed diet, nutritional status, and consensual criteria for tumor response assessment are needed.
In conclusion, dietary interventions during RT could be a simple and medically economical and inexpensive method that may deserve to be tested
to improve efficiency of radiation. Adv Nutr 2020;11:1089–1101.
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Introduction
Background
The effect of conventional radiotherapy (RT) is mostly due to
oxidative damage induced by reactive oxygen species (ROS)
released during water radiolysis, in particular hydrogen
peroxide (1). Oxygen is the best radiosensitizer, which favors
ROS formation and oxidative stress–mediated damage (2).
However, cancer tissues are often hypoxic (3). Therefore,
to increase oxygen concentration in tumors, several pro-
oxidative strategies have been proposed, such as hyperbaric
oxygen therapy, blood transfusions, erythropoietin injection

(4, 5), as well as hypoxia-inducible factor 1 (HIF-1) inhibitors
(6) and oxygen mimetics compounds (7, 8). In recent times,
there has been increasing interest by the general public in
the use of natural products and diet regimens for cancer
prevention and improvement in the efficacy and tolerability
of cancer treatment.

However, the impact of dietary measures on response to
radiation has been poorly elucidated. It has been reported
that nutrient deprivation stimulates hydrogen peroxide
production in cancer cells and promotes oxidative stress in
response to RT (9, 10). However, since maintenance of an
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appropriate BMI is a major determinant of RT efficacy (11–
13), it may appear counterproductive to propose dietary
restrictions during this period. In a recent review of >200
cancer patients consuming ketogenic diets (KDs) (14), it
was concluded that the “probability of achieving an anti-
tumor effect seemed greater with KDs than that of causing
serious side effects.” To clarify these issues, we conducted a
systematic review examining the potential benefit of various
nutritional interventions during RT, such as short fasting
(SF), caloric restriction (CR), KD, and protein/amino acid
restriction, to increase tumor response and survival.

Hallmarks of tumor cell metabolism
Cancer cells, even in presence of normal oxygen con-

centration, consume great amounts of glucose and release
lactic acid, a phenomenon called the “Warburg effect” (15,
16). This metabolic anomaly is sustained by a complex
interaction among different factors such as inactivation
of onco-suppressor genes (p53), activations of oncogenic
(MYC and RAS) and hypoxia-related (HIF-1) pathways,
promotion of the proliferative signaling axis mediated by the
phosphatidylinositol 3-kinase/protein kinase B/mammalian
target of rapamycin (PI3K/AKT/mTOR), as well as loss of
mitochondria, dysfunction of the tricarboxylic acid cycle
(TCA) cycle, and of the respiratory chain (17,18). The large
consumption of glucose and calories sustains biosynthesis
while mitochondrial ATP, citrate and ROS production
are maintained in adequate ranges for active proliferation
(19). Lactate, released in the microenvironment, promotes
invasiveness, suppresses immune response, and can fuel the
oxidative metabolism of well-oxygenated cancer cells. This
recycling pathway allows sparing of glucose for most hypoxic
cancer cells (20). The presence of these metabolic features
is in accordance with the observed correlation between a
high uptake of 18F-fluorodeoxyglucose (18FDG) by tumors
in positron emission tomography (18FDG-PET) scan and
a highly glycolytic metabolism, translating into increased
resistance to chemotherapy (CT) and RT (21) and poor
survival (22, 23).

Definition of dietary interventions
SF is a complete cessation of all caloric intake for a limited
interval of time (24), while CR is usually defined as a
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reduction in calorie intake of ≥20–30%, without restriction
of water (25). CR is usually limited to a maximum of 3
d; however, repeated cycles are possible (26,27). Severe and
prolonged CR (<600–800 kcal/d) corresponds to a very
low caloric intake. For instance, a low-caloric diet provides
between 10 and 20 kcal/kg of “desirable” body weight, while
a very-low-caloric diet provides ≤10 kcal/kg of desirable
weight intake (28).

Low-carbohydrate/lipid-rich diets have been proposed
and popularized as KDs. There is no consensus on a
definition of KDs: in general, fat intake accounts for >75% of
energy intake. The traditional 4:1 ratio is composed, in total
calories, of 90% lipids, 8% proteins, and 2% carbohydrates,
respectively (26, 27). Less-strict KDs have recently emerged,
with ratios of 3:1 and even 2:1, and thus many current “KDs”
often contain more protein. Thus, some KDs mimic the so-
called Atkins diet, which did not restrict consumption of
calories or proteins and was historically tested for intractable
epilepsy (29), or can contain more carbohydrates due to
a high proportion of medium chain triglycerides, which
promote liver ketone body synthesis (27). In cancer research,
isocaloric KDs are mostly used in order to maintain weight,
which is essential for cancer patients undergoing therapy,
and should be distinguished from nonisocaloric KDs that
combine this strategy with moderate CR.

Protein restriction (PR) is defined by a reduction in
protein intake, representing <12.5% of total calories without
CR (14). It should also be considered that, beyond their raw
caloric value, dietary proteins are also a source of essential
(not synthesized by eukaryotic organisms) and conditionally
essential amino acids, whose synthesis can be limited under
special pathophysiological conditions: an imbalance in the
pool of amino acids absorbed through diet may have
important metabolic implications in protein synthesis. For
this reason, a dietary strategy based on selective amino acid
deprivation may target specific metabolic patterns that are
impaired in cancer cells (30).

Interplay of nutritional state with radiation sensitivity
Radiation induces oxidative stress by increasing ROS pro-
duction, most notably superoxide ion released at the level of
complex I and III of the respiratory chain. Thus, superoxide
likely damages in first instance mitochondrial DNA, which
is located in proximity of the respiratory chain and is not
protected by histone proteins, as opposed to nuclear DNA
(31). It is noteworthy that manganese superoxide dismutase
(MnSOD)—converting superoxide to hydrogen peroxide,
a less toxic compound—is located in mitochondria (31),
suggesting that mitochondrial “dysfunction” (32, 33) has a
major role in carcinogenesis through loss of mitochondria
(34) and/or altered metabolism (35).

Delivery of an effective RT dose is limited by its toxicity on
healthy tissues, especially on proliferating cells (bone mar-
row, gastrointestinal, hair follicles, and heart cells). Hence,
it is of primary importance to selectively increase tolerance
and recovery of normal cells. Unfortunately, radioprotective
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properties of natural antioxidants (e.g., glutathione, vitamin
E, and analogs) or synthetic compounds (amifostine) are
limited or questioned (36). Interestingly, SF, CR, and a
KD could exert radioprotective effects because healthy cells
would more efficiently adapt to glucose starvation than
cancer cells, which led to a concept of a “differential stress
resistance” (37–39) (Supplemental Figure 1).

The rational explanation supporting differential stress
resistance is that metabolism of healthy cells is censored by
suppressive control checkpoints [Rb, p53, p21, phosphatase
and tensin homolog (PTEN), sirtuin-3 (SIRT3)], and is
thus more flexible than cancer cell metabolism, which lacks
censoring mechanisms (40, 41).

In healthy cells, glucose starvation induces a downregula-
tion of the PI3K/AKT/mTOR proliferative pathway, resulting
in the inhibition of the Warburg effect (42, 43), while
activation of AMP-kinase (AMPK), the key energy sensor,
activates fatty acid oxidation (FAO) and inhibits glycolysis
(44). Of note, FAO is the most efficient catabolic pathway
generating ATP and NAD. Both molecules, sustaining cell
survival and repair, are regulated by p53, p21, the protein
kinase forkhead box protein O3 (FOXO3), and the NAD+-
dependent poly[ADP-ribose]polymerase 1 (PARP1) (45–47).
Additionally, ROS neutralization is promoted by NAD+-
dependent SIRT3, which upregulates MnSOD2 and also
counteracts the Warburg effect (48–50).

Glucose-starved cancer cells may escape these regulatory
checkpoints, particularly when driven by strong oncogenic
signals such as RAS/RAF, insulin-like growth factor I (IGF-
I) axis, mitogen-activated protein kinase (MAPK), and c-
Myc dictating an anabolic metabolism and forcing cells
to replicate (51, 52), especially as suppressive controls are
defectives. This can have important consequences for the
metabolic assets of tumor cell, due to the dual-faceted activity
of key regulator enzymes: for example, AMPK may shift from
a profile characterized by a dominant activation β-subunit
of AMPK, which promotes glycolysis and inhibits oxidative
phosphorylation (OXPHOS) (44), to a prevalent activation of
the α-subunit (53,54) under glucose starvation, thus forcing
cancer cells to increase OXPHOS and generating more ATP
with an increase in ROS production.

Similarly to SF and CR, KDs induce chronic glucose star-
vation since, in contrast with normal cells found in healthy
tissues (in particular, the brain, heart, and muscle), cancer
cells cannot catabolize either exogenous (supplied by dietary
intake) fatty acids or endogenous ketone bodies (derived
from FAO and released by the liver) to produce energy
(55,56) because they lack catabolizing mitochondrial en-
zymes [i.e., 3β-hydroxybutyrate dehydrogenase (3β-OHBD)
and succinyl-CoA:3-ketoacid CoA transferase (SCOT)] (56).

Concerning the interest of protein/amino acid restriction,
it must be noted that biosynthesis and proliferation of
various cancer cells lines can be supported by other nutrients
than glucose (i.e., glutamine), especially in case of glucose
starvation (57,58). Starvation in amino acids can inhibit
tumor proliferation, as shown by arginine (59,60), serine,
glycine (61), or methionine deprivation (62). Interestingly,

cisplatin-resistant cells appear to be very sensitive to glu-
tamine starvation (63). Arginine deprivation can counteract
cancer development because the molecule is a precursor of
polyamines, NO, and proline. An arginine diet could be
effective in many cancers knowing that arginine-succinate
synthetase 1 (ASS1) is commonly reduced or lost in liver
cancer, metastatic melanoma, renal cell carcinoma, platinum
refractory ovarian tumor, and in almost 90% of sarcomas
regardless of their subtypes (60). In sarcoma, arginine de-
privation with pegylated arginine deiminase induces cancer
cell death if it is associated with chloroquine, an inhibitor of
autophagy (60).

Current Status of Knowledge
Search methodology
A literary search was performed in PubMed in accordance
with Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) (64) using the following keywords:
fasting, caloric restriction, ketogenic diet, protein restriction,
amino-acid restriction, Warburg effect, and cancer and
radiation. Evaluation of appropriateness was independently
carried out by 2-author teams with expertise in radiation
oncology and tumor metabolism (ML and MA, PI and LO).
In case of inconsistency or disagreement, a final decision was
formulated with a third author team (JT and PF). Thus, we
identified 484 potentially eligible articles and checked their
references for additional articles. Using this manual ad hoc
checking, we found 7 additional articles. The progression
of this methodology is summarized in Figure 1. After
duplicates were removed, 90 articles remained. Among them,
according to a consensus of all authors, we finally identified
26 eligible articles that reported data on RT and diets. In
total, we found 9 original studies on cultured cells, 8 original
studies in murine models, and 9 clinical studies including 2
case reports.

Preclinical experiences in SF and CR
In vitro experiments showed that near-complete SF increases
cancer cell sensitivity to RT in various cancer cell lines
(65,66). In a preclinical model of SF, hepatocellular carci-
noma (HepG2), and hepatoblastoma cells (HuH6-clone5)
were cultured in serum-free media for 6 to 24 h, showing
increased sensitivity to RT (range: 0–10 Gy) correlated with
activation of mTORC1, a critical pathway involved in ROS-
mediated cell damage detection (via ATM) and repair (via
modulation of autophagy) (65). Glucose starvation for 24
h increased DNA damage and double-strand-break DNA
lesions induced by RT in the lung adenocarcinoma A549
cells and in the head and neck squamous cancer FaDu
cells, while normal HSF7 fibroblasts were not affected by
glucose starvation (66). Another model of glucose starvation,
induced by inhibition of glucose uptake with 2-deoxyglucose,
also increased sensitivity to radiation (2 Gy) in radio-
resistant rSCC-61 head and neck cancer cells (67).

In vivo experiments studying short-term SF and CR
associated with RT on different mice models of cancers are
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FIGURE 1 Flowchart for the literary search according to PRISMA. PRISMA, Preferred Reporting Items for Systematic Reviews and
Meta-Analyses.

reported in Table 1 (68–72). In summary, a CR of 30%
increased tumor regression or delayed occurrence of metas-
tases in 3 animal models of mammary tumors, including
2 models of triple-negative breast cancer (TNBC) (71, 72).
The decrease in metastatic dissemination of tumor cells
correlated with the downregulation of IGF-I receptor (IGF-
IR), and PI3K/mTOR pathways, as well as the inhibition
of the microRNA-17/20a cluster regulating expression of
extracellular membrane proteins (72, 73). More pronounced
caloric starvation (70% CR), coupled with low-dose irradia-
tion (0.04 Gy) induced regression of spontaneous mammary
cancers in C3H/He mice, associated with massive infiltration
of cytotoxic CD8+ T cells (69). SF for 48 h, prior to RT
and temozolomide (TMZ) increased survival of mice bearing
glioma tumors implanted subcutaneously or in the brain (68).
Remarkably, in this study, SF as a single therapy significantly
increased survival, decreased the size of subcutaneous
glioma, and reinforced the effects of TMZ in intracranial
tumors. A significant reduction in circulating blood glucose
and IGF-I concentrations levels was also noticed.

We found no mature results from clinical studies
evaluating RT with SF or CR. One clinical trial cur-
rently is evaluating the benefit of CR (∼25%) in pa-
tients with localized breast cancer undergoing surgery and

RT (clinicaltrial.gov, NCT01819233): results are not yet
available.

Preclinical experiences in KDs
In vitro, the administration of ketone body 3β-
hydroxybutyrate (3β-OHB) at 3 mM concentration failed
to induce additional inhibitory effects on the proliferation
of 7 human breast cancer cells lines (BT20, BT474, HBL100,
MCF-7, MDA-MB 231, MDA-MB 468, and T47D) exposed
to various doses of RT (0, 2, 4, 6, and 8 Gy) in association
with different cytotoxic agents (carboplatin, epirubicin,
paclitaxel) and cultured in 5 mM glucose medium in
response (74).

In vivo experiments (Table 2) (75, 76) showed slower
tumor progression as well as increased survival in mice
grafted with high-grade glioma, lung, or pancreatic cancer
cells, when mice received a KD in association with RT (75–
77).

Human noncontrolled/single-arm pilot studies and 2 case
reports (in total, n = 77 patients) reporting RT and KD
associations are presented in Table 3 (70, 77–84). Isocaloric
KDs were used in the 5 pilot studies, while a nonisocaloric
approach combining KD + CR (660–900 kcal/d) was applied
to the 2 case reports. Briefly, in these small cohorts of
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TABLE 1 Short-term feed deprivation and caloric restriction associated with RT in mouse models of cancers: effects on tumor volume and
survival1

Authors, year (ref) Cancer model Therapeutic protocol Oncological effects

Kharazi et al., 1994 (69) Female C3H/He mice,
spontaneous mammary
tumor

70% severe CR for 1 mo; RT, low dose:
0.04 Gy from a 6o Co source, 3
times/wk for 4 wk

70% RTV under CR + RT; T cells CD8+
in tumors; no effect with RT or CT
alone

Safdie et al., 2012 (68) Glioma GL26 cells,
subcutaneous or intracranial
models

SF 48 h before TMZ ± RT ± RT: 7.5, 5,
2.5 Gy, at days 1, 15, and 22

DTG and IS

Saleh et al., 2013 (71) TNBC (4T1 and 67NR cells) 30% CR + RT at initial burden; 6
Gy for 67NR cells, 8 Gy for 4T1 cells.

RTV

Simone et al., 2016 (72) TNBC (4T1 cells) 30% CR at initial burden+ RT: 8 Gy Lung metastases delayed
(occurrence and number),IS

1CR, caloric restriction; CT, chemotherapy; DTG, delaying tumor growth; IS, increased survival; KD, ketogenic diet; ref, reference; RT, radiotherapy; RTV, regression of tumor volume;
SF, short fasting; TMZ, temozolomide; TNBC, triple-negative breast cancer.

miscellaneous tumors (including glioma, breast, prostate,
rectum, or small cell lung cancers), stabilization or regression
of cancers was often reported. Concerning the 2 individual
case reports, it was proposed that the rapid regression of
glioma tumors after subtotal resection could be partially
ascribed to the strict diet regimen (3-d SF followed by severe
CR reducing the caloric intake to ∼60%, then a KD for
several months) ,which was administered during the course
of RT and TMZ (79, 83).

In both cases, no steroid medication was administered,
and weight loss was maintained within 20% of baseline. In 1
case, despite initial major and rapid regression, a recurrence
was observed at 9 mo, possibly in correspondence with
suspension of the KD (79). In the second case, the patient
ceased the KD at 9 mo and was still in good health at 20 mo,
with a small, clinically stable residual disease (83).

As reported in Table 4, we list 15 clinical randomized trials
testing RT with a KD. Results are not yet available.

Preclinical experiences in protein/amino acid restriction
Only in vitro models of amino acid restriction were identified
in our search, while no studies of PR were identified.
Arginine starvation induced massive apoptosis in 4 human
epithelial cancer cell lines in 2D monolayer and 3D spheroid
cultures and was remarkably efficient in association with RT
(85). Pretreatment of cancer cells with arginase, an enzyme
involved in arginine degradation, significantly enhanced the
response to RT. The sensitivity to RT was reinforced by a low
concentration of canavanine, a toxic arginine analog (86).

In a preclinical study, methionine starvation altered
the metabolomic profile and significantly reduced tumor
growth after a focal 20-Gy irradiation, in a mouse model of
constitutively chemo- and radio-resistant human soft tissue
sarcoma with mutated, KRAS, and p53-deficient cells (62).
We found no other animal model or human clinical trials
studying RT in association with either PR or amino acid
restriction. Of note, despite 4 trials investigating PR in
cancer in Clinicaltrials.gov, none address the question of the
combination with RT.

Dietary interventions in association with RT
As shown by in vitro and in vivo studies (Table 1), SF po-
tentially increases the radiosensitivity of glioma tumors (68),
while 30% to 70% CR increased tumor sensitivity to RT + CT
in several mammary cancer models (including TNBC) (71,
72). The increasing regression of tumors after short SF or CR
associated with RT with or without CT has been correlated
with the downregulation of the IGF-I/PI3K/mTOR pathway.
Indeed, decreased glucose and IGF-I serum concentrations
were observed during SF + RT (68), as well as reduced
concentrations of IGF-IR (72) and downregulation of mTOR
(71). This suppressive effect of CR or short SF on the IGF-
I/PI3K/mTOR axis is extremely relevant considering the key
role of this pathway in promoting the Warburg effect and
tumor growth (87–89). It is noteworthy that IGF-IR is not
counteracted by a dysfunctional or mutated p53 (87, 90)
and is frequently overexpressed in various aggressive cancers
(91). Interestingly, CR has been found, in a murine model,
to reduce the risk of late occurrence of cancer after RT (92).
This preventive role could rely on epigenetic processes and
activation of immune surveillance. Concerning this latter
aspect, SF also enhances the immune cytotoxic response
against cancer cells (Table 1): a severe 70% CR during 1
mo associated with low-dose RT was shown to induce a
massive cytotoxic response in a mammary cancer mouse
model, albeit the uncombined treatment was not sufficient to
induce this effect (69). Furthermore, intermittent 24-h SF for
2–3 wk increased tolerance to whole-body irradiation in mice
and was associated with a better recovery of the leucocyte
blood cell count following a sublethal dose of 5.26 Gy (93).
Because cancer cells compete with lymphocytes and divert
glucose for their own use (94), SF or CR associated with RT
might likely activate an acute immune response by increasing
glycolysis in CD8+ T cells, while glycolysis in cancer cells
is inhibited. Likewise, activation of glycolysis in effector T
cells leads to inactivation of programmed death 1 (PD-1)
ligand (PD-L1), resulting in their expansion and activation
with release of IFN-γ (95).

In summary, preclinical experiments support the hypoth-
esis that short SF and CR promote effectiveness of RT by
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increasing cytotoxic stress, acute inflammation, and immune
response; moreover, inhibition of the IGF-IR signaling
pathway inactivates cancer cell proliferation and supports
recovery of healthy cells.

Focusing on a KD, an increased response to RT in various
animal models has been reported, consisting of delayed
tumor progression, reduced occurrence of lung metastases,
and prolonged survival, as seen in Table 2. In patients
(Table 3), several studies suggested a possible benefit of KDs
on tumor response.

It is noteworthy that, similarly to SF/CR, a KD may
increase the immune response as shown in murine models
of glioma by decreasing expression of immune inhibitory
receptors PD-1 and cytotoxic T-lymphocyte–associated pro-
tein 4 (CTLA-4) as well as their inhibitory ligands (96).
In accordance, immunosuppressive regulatory T cells and
myeloid-derived suppressor cells (MDSCs) were depleted in
another study (97).

In addition to these possible tumor-directed effects of
a KD which could reinforce the efficiency of conventional
treatment, especially in brain tumors (33), several studies
have pointed out other beneficial effects of KDs on physical
and mental condition. A KD is often well accepted and
tolerated (98), in particular in children with brain tumor
(78,84), despite frequent fatigue, constipation, and weight
loss. An improvement in quality of life can be expected (99)
and weight loss is likely dependent on the duration of the KD
and extent of CR: weight decreased by a mean of 4% (0.0–
6.1%) in 10 cancer patients receiving a KD with 35% ± 6%
CR (100).

A better preservation of lean mass could be expected,
since weight loss should mainly occur at the expense of body
fat (26, 27). In a recent interim analysis reported by the
KETOCOMP group, studying the benefit of a KD on RT in
patients with rectal and breast cancers, 20 patients receiving
a KD showed a loss of 0.5 and 0.4 kg fat mass/wk, with
no significant changes in fat-free and skeletal muscle mass
(70). This preservation of lean mass seems in line with the
physiological regulation promoting gluconeogenesis in case
of starvation, because this pathway is primarily sustained
by glycerol provided by lipolysis and not by amino acids
derived from proteolysis (101); this reduction in amino acid
consumption delays proteolysis and loss of muscle resulting
in sarcopenia, a process favored by a low baseline BMI
reflecting poor fat reserves (102–104).

With regard to protein/amino acid restriction, the evi-
dence in favor of a radiosensitizing effect of these interven-
tions according to our analysis of the available literature is
limited to single amino acid deprivation: for this reason,
the impact of deprivation of simple amino acids cannot be
differentiated from that caused by a reduction in the intake
of whole proteins. This has important implication, since
whole protein–restricted diets could be easier to prepare than
diets based on single amino acids, considering, for example,
that a vegan diet is low in methionine (105). Other than
its exclusive metabolic implications, PR may be involved in
modulation of immune antitumor response. Very recently, a
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TABLE 4 Current clinical trials associating a KD and RT1

Study number Study Protocols

NCT01975766 KD phase 1 in head and neck cancer RT + CT ± KD
ACTRN12614001056684 Pilot study evaluating progression-free survival in glioma cancers under

standard treatment (CT + RT) associated with KD
RT + CT ± KD

NCT01092247 Effect of KD, CR, and IF cancer recurrence and progression (ARTZI 2017) RT ± KD + CR and IF
NCT01754350 KD, CR, and IF during re-irradiation of recurrent GBM (ERG02) RT ± KD + CR and IF
NCT01819233 CR in breast cancer undergoing surgery and RT RT + CT + CR 25%
NCT02046187 KD as adjunctive treatment of RT and CT in newly diagnosed glioma RT = CT ± KD
NCT02302235 KD as adjunctive treatment of RT and CT in glioma RT + CT ± KD
NCT02149459 Metabolic manipulation combined with RT as treatment of recurrent brain

tumors (smc0712–13)
RT + KD + metformin

NCT02516501 Impact on body composition of KD during RT (KETOCOMP) RT ± KD
NCT03278249 Feasibility study of modified Atkins KD in treatment of newly diagnosed glioma RT + CT ± KD
NCT01419483 KD with concurrent chemoradiation in pancreatic cancer RT + CT + KD
NCT01419587 KD with concurrent chemoradiation in non–small cell lung cancer. RT + CT + KD
NCT01754350 CR with IF and KD with concurrent RT in recurrent glioma RT + CR + IF + KD
NCT02302235 KD as adjunctive treatment of RT and CT in glioma RT + CT ± KD
NCT02149459 Metabolic manipulation combined with RT as treatment of recurrent brain

tumors (smc0712–13)
RT + KD + metformin

1CT, chemotherapy; CR, caloric restriction; IF, intermittent fasting; KD, ketogenic diet; RT, radiotherapy.

low-protein (< 5%) isocaloric diet reduced tumor growth in
3 independent mouse cancer models (lymphoma, melanoma,
and colon cancer); the anticancer effect of this moderate-
protein starvation was mediated by activation of CD8+ T-cell
immune response. In contrast, a low-carbohydrate diet had
no effect in these mouse models (106).

Controversies
It has been reported that ketone bodies may be used by tumor
cells as a substrate for energy metabolism as shown by in
vitro and in vivo experiments (107, 108). For instance, 3β-
OHB did not influence proliferation and response to CT
and RT of several breast cancer cell lines cultured in low-
glucose medium (5 mM) (74), but accelerated tumor growth
in an acute myeloid leukemia xenograft model (109) as well
as some breast cancer models (110, 111). In mice bearing
MMTV-NEU-NT mammary tumors, 3β-OHB increased
ATP production in cancer cells (measured by spectrometer)
and promoted tumor growth, while demonstrating no effect
on histone acetylation (108). In fact, very few studies have
been conducted on cell lines supporting the “paradigm” that
cancer cells lack 3β-OHBD and SCOT (55, 112–114). Several
authors reported the capability of cancer cells to utilize fatty
acids, especially when they grow in rich adipocyte tissues
or atmosphere (115–118). Tisdale and Brennan (55) studied
10 murine cell lines, including 5 hematopoietic cells lines: 1
sarcoma cell line, 1 carcinosarcoma cell line, 1 “rat” cell line,
and 2 bladder cell lines. While SCOT activity was reduced
in these tumor cells in comparison with normal tissues, 3β-
OHBD activity levels were quite similar. Moreover, in 4 cells
lines cultured with 2 mM of 3β-OH for 7 d, the decrease
in 3β-OH over this period ranged from 14% to 44%, thus
demonstrating significant consumption of the ketone bodies.

It could be inferred that specific brain tumors (e.g.,
astrocytoma, schwannoma, and craniopharyngioma) may

have significantly lower concentrations of enzymes catabo-
lizing ketone bodies (in particular, SCOT), in comparison
with normal brain; however, a panel of 7 glioblastoma
multiforme exhibited a wide range of enzymatic activities
(112). More recently, gene expression of 3β-OHBD and
SCOT has been found to be lower in malignant astrocytoma
(CT-2A) and human malignant glioma (U87-MG) cells
lines implanted in the brain of mice (113), as well as in
human neuroblastoma (SK-N-AS) cell lines (112–114) in
comparison with normal brain. It is noteworthy that, in 2
patients with glioblastoma showing little benefit from a KD,
in both cases tumors expressed mitochondrial 3β-OHBD
and SCOT (119). Furthermore, even if SCOT is deficient,
acetoacetate could promote tumor growth as shown in mice
bearing human melanoma xenografts with BRAF V600E
expression, the binding of acetoacetate to BRAF protein
promoting growth (107).

Of note, the small numbers of patients in these cohorts
and the absence of control groups hinder any definitive
conclusions. Furthermore, in 3 studies, a KD was not
the only variable associated with response to RT but was
frequently combined with other therapeutic measures such
as chemotherapy (70,77–80), SF (70) or CR (79, 83). With
regard to the latter, it should be noted that unintended CR
may occur in patients receiving an isocaloric KD (100),
resulting in additional confounding bias.

Hence, the presence of multiple confounders is a serious
limitation in defining the individual impact of a KD in
retrospective experiences, as proposed by some authors
(120), while results from 15 clinical randomized trials testing
a KD and RT are not yet available (Table 4).

It should be pointed out that numerous cancer cells are
not inherently glycolytic but rely on a predominant oxidative
metabolism or an intermediate functioning (121, 122). Thus,
as remarked by Rodrigues et al. (108), the “butyrate paradox”
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is likely related to the capability of 3β-OHBD acting as an
energy source in cells supported by an oxidative metabolism,
and as an epigenetic factor inhibiting cancer growth in
cells relying on the Warburg effect (123). Under glucose
deprivation (0.5-mM concentration) cancer cells carrying
KRAS and BRAF mutations can also increase the expression
of glucose membrane transporter GLUT1, a carrier that has
a high avidity for glucose (124). Thus, stress conditions may
select resistant cancer cells capable of adapting to changes
in their microenvironment by modifying their metabolism,
epigenome, and genomes.

Diets based on a single amino acid may have dual effects:
for example, a protein-deficient diet, in particular with
reduced methionine, can promote hepatocarcinogenesis in
animals (125, 126), while arginine supplementation antago-
nizes both in vitro and in vivo the malignant transformation
of mammary epithelial cells (59). Of note, arginine supple-
mentation could also improve the performance status and
Karnofsky index of patients with esophageal cancers (127)
and reduces (in association with glutamine and fish oil) the
incidence of severe hematologic toxicities occurring during
CT and RT (128).

Concluding Remarks
In conclusion, our literature review offers preliminary evi-
dences that SF before RT and CR during RT sessions may
improve tumor response to radiation. Repeated sessions may
increase the efficiency of RT administration and might exert
a radioprotective effect on healthy tissues. This nutritional
strategy might be of interest for tumors displaying high
glucose uptake on PET scan, a feature associated with
poor survival that may be related to Warburg metabolism
functioning (22, 23).

Other interventions, such as KDs, may be more haz-
ardous, considering the contradictory results of preclinical
studies, and some authors have advised against their use in
cancer patients (120). Even if preclinical studies and limited
clinical experiences argued in favor of a possible beneficial
synergistic effect of KDs and RT in high-grade cancers (in
particular for TNBC and brain tumors) (27, 33, 98, 119),
more robust data are needed.

Only evidence-based data from randomized clinical trials
can evaluate the impact of dietary interventions on response
to cancer treatments (129). It should be pointed out that, even
if the majority of animal studies (∼70%) provide evidence
of an antitumor effect of KDs (130), preclinical models
give often discordant results and do not reflect the clinical
situation, since the metabolic rate in mice is 7-fold higher
than in humans (131).

Human trials should strictly define daily caloric intake,
composition of diets, placebo diets, biological parameters
assessing glucose starvation and ketosis (132), as well as
prespecified criteria for the evaluation of tumor response.
To assess which nutritional strategies should be favored, a
deeper knowledge of the specific biological vulnerabilities of
each cancer type should be obtained. For that purpose, as-
sessment of various proteins (IGF-I) and metabolite profiles

on liquid samples (133) and expression analysis of enzymes
and membrane transporters on tumor biopsies (134) could
be performed to identify the metabolic profile involved in a
specific clinical situation (20, 135, 136).

Finally, modulation of nutrition during RT could be a
simple and medically economical and inexpensive method
that may deserve to be tested to improve efficiency of RT
by exploiting increased radiosensitivity of tumor cells while
reducing radiation-related injury to healthy tissues.
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